5,573 research outputs found

    Stabilizing the Dilaton in Superstring Cosmology

    Get PDF
    We address the important issue of stabilizing the dilaton in the context of superstring cosmology. Scalar potentials which arise out of gaugino condensates in string models are generally exponential in nature. In a cosmological setting this allows for the existence of quasi scaling solutions, in which the energy density of the scalar field can, for a period, become a fixed fraction of the background density, due to the friction of the background expansion. Eventually the field can be trapped in the minimum of its potential as it leaves the scaling regime. We investigate this possibility in various gaugino condensation models and show that stable solutions for the dilaton are far more common than one would have naively thought.Comment: 13 pages, LaTex, uses psfig.sty with 3 figure

    Moduli Evolution in Heterotic Scenarios

    Get PDF
    We discuss several aspects of the cosmological evolution of moduli fields in heterotic string/M-theory scenarios. In particular we study the equations of motion of both the dilaton and overall modulus of these theories in the presence of an expanding Universe and under different assumptions. First we analyse the impact of their couplings to matter fields, which turns out to be negligible in the string and M-theory scenarios. Then we examine in detail the possibility of scaling in M-theory, i.e. how the moduli would evolve naturally to their minima instead of rolling past them in the presence of a dominating background. In this case we find interesting and positive results, and we compare them to the analogous situation in the heterotic string.Comment: 12 pages, 4 postscript figure

    Deterministic creation of stationary entangled states by dissipation

    Full text link
    We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.Comment: Published versio

    Generation of time-bin entangled photons without temporal post-selection

    Full text link
    We report on the implementation of a new interferometric scheme that allows the generation of photon pairs entangled in the time-energy degree of freedom. This scheme does not require any kind of temporal post-selection on the generated pairs and can be used even with lasers with short coherence time.Comment: RevTex, 6 pages, 8 figure

    Observation of the Meissner effect with ultracold atoms in bosonic ladders

    Full text link
    We report on the observation of the Meissner effect in bosonic flux ladders of ultracold atoms. Using artificial gauge fields induced by laser-assisted tunneling, we realize arrays of decoupled ladder systems that are exposed to a uniform magnetic field. By suddenly decoupling the ladders and projecting into isolated double wells, we are able to measure the currents on each side of the ladder. For large coupling strengths along the rungs of the ladder, we find a saturated maximum chiral current corresponding to a full screening of the artificial magnetic field. For lower coupling strengths, the chiral current decreases in good agreement with expectations of a vortex lattice phase. Our work marks the first realization of a low-dimensional Meissner effect and, furthermore, it opens the path to exploring interacting particles in low dimensions exposed to a uniform magnetic field

    Hyperentanglement-enabled Direct Characterization of Quantum Dynamics

    Full text link
    We use hyperentangled photons to experimentally implement an entanglement-assisted quantum process tomography technique known as Direct Characterization of Quantum Dynamics. Specifically, hyperentanglement-assisted Bell-state analysis enabled us to characterize a variety of single-qubit quantum processes using far fewer experimental configurations than are required by Standard Quantum Process Tomography (SQPT). Furthermore, we demonstrate how known errors in Bell-state measurement may be compensated for in the data analysis. Using these techniques, we have obtained single-qubit process fidelities as high as 98.2% but with one-third the number experimental configurations required for SQPT. Extensions of these techniques to multi-qubit quantum processes are discussed.Comment: This is part of a joint submission with an implementation with Ions: "Experimental characterization of quantum dynamics through many-body interactions" by Daniel Nigg, Julio T. Barreiro, Philipp Schindler, Masoud Mohseni, Thomas Monz, Michael Chwalla, Markus Hennrich and Rainer Blat

    Reconstructing the Inflaton Potential

    Get PDF
    A review is presented of recent work by the authors concerning the use of large scale structure and microwave background anisotropy data to determine the potential of the inflaton field. The importance of a detection of the stochastic gravitational wave background is emphasised, and some preliminary new results of tests of the method on simulated data sets with uncertainties are described. (Proceedings of ``Unified Symmetry in the Small and in the Large'', Coral Gables, 1994)Comment: 13 pages, uuencoded postscript file with figures included (LaTeX file available from ARL), FERMILAB-Conf 94/189

    Quantum Process Estimation via Generic Two-Body Correlations

    Get PDF
    Performance of quantum process estimation is naturally limited to fundamental, random, and systematic imperfections in preparations and measurements. These imperfections may lead to considerable errors in the process reconstruction due to the fact that standard data analysis techniques presume ideal devices. Here, by utilizing generic auxiliary quantum or classical correlations, we provide a framework for estimation of quantum dynamics via a single measurement apparatus. By construction, this approach can be applied to quantum tomography schemes with calibrated faulty state generators and analyzers. Specifically, we present a generalization of "Direct Characterization of Quantum Dynamics" [M. Mohseni and D. A. Lidar, Phys. Rev. Lett. 97, 170501 (2006)] with an imperfect Bell-state analyzer. We demonstrate that, for several physically relevant noisy preparations and measurements, only classical correlations and small data processing overhead are sufficient to accomplish the full system identification. Furthermore, we provide the optimal input states for which the error amplification due to inversion on the measurement data is minimal.Comment: 7 pages, 2 figure

    HiggsToFourLeptonsEV in the ATLAS EventView Analysis Framework

    Get PDF
    ATLAS is one of the four experiments at the Large Hadron Collider (LHC) at CERN. This experiment has been designed to study a large range of physics topics, including searches for previously unobserved phenomena such as the Higgs Boson and super-symmetry. The physics analysis package HiggsToFourLeptonsEV for the Standard Model (SM) Higgs to four leptons channel with ATLAS is presented. The physics goal is to investigate with the ATLAS detector, the SM Higgs boson discovery potential through its observation in the four-lepton (electron and muon) final state. HiggsToFourLeptonsEV is based on the official ATLAS software ATHENA and the EventView (EV) analysis framework. EventView is a highly flexible and modular analysis framework in ATHENA and it is one of several analysis schemes for ATLAS physics user analysis. At the core of the EventView is the representative "view" of an event, which defines the contents of event data suitable for event-level physics analysis. The HiggsToFourLeptonsEV package, presented in this paper, prepares the data for the given analysis context on the Analysis Object Data (AOD) files, the event-level physics analysis is performed and finally the output information is written as an Ntuple which can be read in stand-alone ROOT. This paper describes the HiggsToFourLeptonsEV package and its structure as a collection of EVTools and EVModules. It also presents some illustrative results from the SM Higgs baseline analysis, like the SM Higgs into four-lepton mass reconstruction for a nominal Higgs mass of 130 GeV. The lepton reconstruction performance as well as the SM Higgs to four leptons analysis performance is studied in detail, in particular the dependence on kinematics, lepton reconstruction algorithms, isolation cuts and Higgs masses. Finally the paper discusses plans to adapt the code in order to produce Derived Physics Data (DPD) in POOL format which can be read in ROOT or ATHENA, thus following the ATLAS analysis model recommendations
    • …
    corecore